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SWSUMMARY

The error function, which occurs in much of the literature of mathematica, physics, and
'w engineering, Is generalised to handle the normal probability distribution In n dimensions.

Explicit integral representations for these functions arn found to be of two general forms,
depending upon whether n is even or odd.

Some readily established recursion formulas and other relationships are derived for these
functions.
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INTRODUCTION

The mathematical theory of probability and the related techniques of statistics are being used
by an increasing number of workers in many diverse fields embracing the sciences and engineering,
as well as mathematics.

Of particular importance, therefore, to engineers, to operations and systems analysts, and to the
designers of experiments are certain standard probability distributions. The most widely employed
of the continuous distributions is undoubtedly the "Gaussian," or "normal" distribution, which is
of enormous theoretical, historical, and practical importance.

The normal distribution, with zero mean, is given by

12
p e-- (1)

and is completely specified by the parameter a, called the "standard deviation."

This distribution has been generalized to n dimensions. The most general n-dimensional nor-
mal distribution contains parameters to account for nonzero means for the n independent variables,
for correlations among the variables, and for unequal standard deviations with respect to each of
the n variables.

This report will concern itself with a very special case of the n-dimensional distribution. In
particular, the means will all be assumed zero, the correlations will all be assumed zero, and the
standard deviations will be assumed equal. The resulting probability distribution is then given by

1 -12 + K n + 2

p(xl, x2 .. x) n e 2,2 (2)
S~(2 n' "

In the one-dimensional case, a commonly occurring expression containing p (x) is that for the
probability with which

xIx< a

This expression is (for X _ 0)

Probl- < x < 4= X p(x) dx (3)

2

e I fe2adx (3)

2
S2 e d. (since the integrand is even)

17,
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This expression cannot be evaluated in closed form for an arbitrary upper limit, but occurs so
frequently that its values have been tabulated, and the expression itself has been given the name
of "error function."

The customary definition of the error function is

erf (x) = 2 e-Y2 dy (4)

In terms of this definition, it follows that

Prob I x I S erf(t2) (5)

The analog of the problem in n dimensions presents no new problems in rectangular coordinates,
since

Prob Ix x< I x& 'x 2  a2. xn an

erf /.....Lrf /. L ... erf / (6)

as a consequence of the appropriate integral separating into a product of integrals with respect to
one variable.

Something new does arise, however, from regarding r = (x1 , . . . , xn) as a vector in n dimen-
sions, and asking what is

Prob Ijr ' t

This is a very natural question to ask for the cases n -- 2, 3.

It is the purpose of the present paper to investigate this question. The result, as will be seen,
is to define an "error function" generalized to n dimensions, in terms of which the required proba-
bility can be written in a manner analogous to equation (5).

Some simple properties of these generalized error functions are proved, and graphs of these
functions are presented.

THE SPECIAL CASE OF TWO DIMENSIONS

As a natural way of introducing generalized error functions it is instructive to consider the
case of two dimensions. This case is well known among the users of probability theory because
of its frequent occurrence and the fact that the mathematics fortuitously permits a solution in
closed form.

The two-dimensional treatment, moreover, is capable of a direct generalization to n dimen-
sions, as will be seen later, and it is therefore profitable to dwell at some length upon this
special case. This will now be done.
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Introduce polar coordinates (r, 0). Then

X2 +y2

'ProbII'Hr 4ff 2~ 2 a x 7IV2 2rro2

circle about
origin, radius a1.c e _T 2 rdrd )

0 0 2 rra 2

2S~r2I. -. " --

- e 2a2 r dr

a
2

2
erf2 Lm (x 2 e 9

fe- 2¢' U2

=0

a2
• .Prob )L I r~•a -e'2" (8)

This is a well known expression which appears very frequently in the literature.

The above result suggests defining an error function in two dimensions by

erf 2 (X ) - 1 - e -X (9 )

0 Then

Probi I _ ' erf 2  (10)

in two dimensions, analogously to equation (5).

The above computational procedure will now be extended to an n-dimensional distribution. It
will be seen later that all the even-dimensional error functions are expressible in closed ;orm,
although not always conveniently so.

THE GENERAL CASE OF n DIMENSIONS

The case of n dimensions, for n :- 2, is carried out analogously to the above two-dimensional
treatment.

It is necessary to evaluate the following expression:

If.f " n2UX x
n 2

Prob• j rI<_ l ]J.] •1 e 202 "dxI ... dxn (11)

hyperaphere (2 n ) 2 (,
.bout origin,
ra(UUm (
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The integration is simplified by introducing hyperapherical coordinates, (R, 01, 02, .... Ol0
according to the transformation equations

X1 R in ( 6L, 02 0 .2 &4" 0nn1

X2 = R ait 0li.n 02 . . . Oin-2 :-1 n1

x3 = R ain 01 ain 02 . . . 3 '~ On-2

x4 =R ,i 01 &i. 02 . . . •On.-4 (n-3 (12)

.........................

Xn-1 = R a,. 01 C" 02

Xn = R c:oa 01

Equation (11) then becomes

Prob LI, z I e R Rno -',,f f d ., (13)

(2ff)T.n O

where d an is an element of hypersolid angle and is independent of R and d R.

In particular,

1=Prob ' t r' I< f e Rn dRf f dIn (14)

(2n) 2  n 0 ...

It follows that
n

Substituting into equation (13),

2• Rn-' d R

Prob I OM C -R 2<d (16)

An obvious change of variable in the integrals gives the result

f'/e-.2 un-' du

Probl Ir" - (17)

f e!"2 un"l d u
0
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Now define a generalized n-dimensional error function, erfn(x), by

fo0x e•"U2 u-'l d u

erfn(x) R 
(18)

f e n-' du

Equations (17) and (18) then imply that

Prob r' O _• errtfn .• (19)

which is analogous to equation (5), and is valid for n = 1, 2, 3, 4,

For n = 1, 2, the definition (18) reduces to the definitions (4) and (9), respectively.

SOME FURTHER ANALYSIS

Consider the integral

Sf e'u 2 uk du (20)

0

which is used as a normalizing factor in equation (18).

Integrating by parts, it is readily established that

Ik+2 k 
(21)

It follows by mathematical induction that

I 2m+1 m!1 ;m 0,1,2 .... (22)

and

12m (2m)i' ;m O , 2 .... (23)

22m m!

but

1=1 e u du 
(24)

and

~oo

IO=fo e"-du2d V/u - (25)

f 2
7



so that

I2m÷1 (26)
2

and

(2 m) (27)

S22m+l (27)

The definition (18) can therefor-a•re be written

erf 2.+(x) = 2 -2m+ ) . 2
m du ; m = 0, 1, 2,... (28)

.F(2 m)! 0

and

erf( 2 xO €2 u2 =m-1 du ;m = 1, 2, 3,... (29)er2 (X) = (m -1 )! f

Equations (28) and (29) may, ift A desired, together be taken as the definition of the generalized
error function, rather than equation .A (18).

The error functions will now behwe shown to satisfy certain relationships.

Integrate equation (28) by part--its, The resulting expression simplifies to

(2 X)2 +e m!fm(M2 m 0, 1, 2 .... (30)
erf 2m +I(x) - erf 2 m +.3(X)

V 7 (2m + 1)!

Proceeding similarly with equ&Aation (29), one gets

2rn
erf 2m+2!-2(X) ;m 1, 2 , 3 ,.. (31)

Recalling equation (9), it follc_• .ows by mathematical induction on equation (31) that

erf 2 m(X)=l-e I 1+-.4 -4*..+...+( ;m 0,1,2.... (32)

Equation (32) shows that all Ur the even-dimensional error functions are expressible in closed

form, although for sufficiently larg. e m the closed form expressions become increasingly compli-

cated.

It follows also from equation * (32) that

2
er ' ) x 7 (33)1 - e erf2 lx) 9• erf 4 (x) erf 6 (x) . (

and that for any preassigned x,
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m?•nerf2m(x) = 0 (34)

In a similar manner, mathematical induction applied to equation (30) gives the result

erf2 m, +(x) = er (x)- e- (2 x) 0 + , (2x)3 11 + + (2x) 2 m'l(m'1)- (3S)3 (3Sm-1

m 1 1, 2, 3, ...

Since erf ,(x) = erf(x) cannot be expressed in closed form, neither can the odd-dimensional

error functions.

However, it is clear from equation (35) that

erf(x) =- erf (x) > erf 3 (x) > erf5(x)_> . . . (36)

since x was assumed non-negative in the definition, equation (18), in view of the probability
application with regard to which the generalized error functions were introduced.

From the point of view of the pure mathematician, it is, of course, desirable to use the de-
finition, equation (18), for negative values of x, as well as for positive values. If that is done,
then the odd-dimensional error functions turn out to be odd functions, while the even-dimensional
functions are even.

i.e., erf 2 m(x) = erf2 m(.X)
(37)

erf 2m +,(X) = - erf 2. +1(-x)

if x is permitted to become negative. For negative x, the inequalities (36) will all be reversed.

These error functions are plotted in figure 1 for positive arguments and dimensions up to 10.

to.
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Figure 1. Generalized Error Functions, erfn (x).
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APPLICATION TO HYPERELLIPSOIDAL DISTRIBUTIONS

Retaining the assumptions of zero bias and zero correlations, but allowing the standard devia-
tions to take on the unequal values a1, (2,..., ant equation (2) generalizes to

' . . +' 2_..
p (xIS ... #x2 )- 1 e-ai V2) (38)n

( 2 F r) ' 3 0 s . . . a n

The loci along which p (x,, . , . , xn) is constant are given by

2 2_+ + ... Ln U2, a constant. (39)
a, 2 an 2

These loci thus form a family of hyperellipsoids, centered at the origin, with semiaxes equal
to ua,, ua2, .... uan and consequently the distribution given by equation (38) may be thought
of as a hyperellipsoidal distribution.

Consider now the probability that a random vector 7= (x1, . . . xn) lies within the hyper-
ellipsoid

X12 X.2
_ +. + . p2  

(40)
a, 2 an 2

Probf .. L<I321 ff f p (r') dV (41)

hypwittllp.oid

where dV is an element of hypervolume in the n-dimensional space.

Prob f X. L<32I =ff f e ca2 a 2 ..d (42)
_i .2t,•,÷
,- -, . (2 r)2 ° , . . . a n

hyperttlipsioid

f �e"�n "2 dX1 ... dX, (43)
. . . (2 ir)2

hyper•phere I..,
2 

= p2

where

x
A , i 1, 2, .... n (44)
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""Prob 321 I R If f-• dD. (45)

introducing hyperspherical polar coordinates, as before.

Again, remembering that

Prb x2< 1 l ~Rn- Ie:T
Prob < ff.. 0  - 2 dRff fd~ln (46)

a 1 2l (2 r)• o ...

it follows that

?<I•2 0(Rn' e- R- dR n-Ie-.n de u

X' 2 }- -R d n

fO Rn' dR uf - e-" du

0

i.e.,

Prob I' < ?2- =erfn (47)

Equation (47) is the desired generalization of equation (19) to the case in which the compo-

nents of r have unequal standard deviations.

It is to be noted that the dimensionless quantity ji appearing in equation (47) reduces to the

quantity ;(of equation (19) for the special case in which a1 - f2 - • n 7

RECAPITULATION

The error function, which occurs in much of the literature of mathematics, physics, and engi-

neering, has been generalized to handle the normal probability distribution in n dimensions.

Explicit integral representations for these functions were found to be of two general forms,

depending upon whether n is even or odd.

Some readily established recursion formulas and other relationships were derived for these

functions.
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